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The electron current along the electiic field might appear to tend to
zero for WeT, — «in a low-density completely ionized plasma in
mutually perpendicular electric and magnetic fields; but this current
is not small in all known real systems, and, in any case, it is larger
by many orders of magnitude than that calculated from classical for-
mulas. This anomalous conductivity is usually ascribed to noise in the
plasma.

However, there is a class of plasma systems for which the anomalous
conductivity can be explained, at least partially, in a different way;
in this class we should include homopolar systems and also certain
accelerators. These systems have insulated walls met almost at right
angles by the magnetic field lines, and the electric field lies almost
exactly along the wall.

If the plasma density is so small that the electron mean free path is
much greater than the twransverse size of the channel (along the mag-
netic field), the conductivity of the discharge gap should be affected
by the collisions of the electrons with the wall. This effect tends to

be of regular character, in contrast to noise; it should appear in some
form even when the magnetic field is zero, but the effects of collisions
of electrons with the wall become clearer when the magnetic field is
strong, since the ordinary conductivity of the plasma is largely sup~
pressed.

The conductivity due to wall collision for wgTe —
will be called wall conductivity, since the current
flows in a thin layer near the wall.

The following is the physical reason why the con-
ductivity is affected by collision of electrons with the
walls.

An electron drifting in crosses (mutually perpen-
dicular) fields E and H acquires a velocity component
transverse to these of w = ¢cE/H. This velocity is lost
on collision with the wall, and so the electron is dis-
placed by a distance on the order of the cycloid height.

The drift builds up in a layer whose thickness is of
the following order:

4
~pp = wT: , (1

and hence the current flows along E within a layer of
this thickness. Here cpg i5 the characteristic thermal
velocity of the electrons, pr is the Larmor radius of
an electron calculated from this velocity, and wg is
the Larmor frequency.

This localization in a thin layer allows one, in
principle, to distinguish the anomalous conductivity
due to noise from the wall conductivity.

There must be a substantial change in electron speed
on collision with the wall in order to produce this
electron displacement. This can occur either by direct
interaction with the surface or by reflection from the
Delye layer. The latter is the more common in dis-
charges. The wall conductivity can be varied within
certain limits via the roughness of the wall,

If the thickness of the reflecting layer in a discharge
is much less than py, reflection in general will be
accompanied by change in the adiabatic invariant vi/ H,
and hence by heating or cooling of the electron com~
ponent. The invariant will not change if the thickness
of the reflecting layer is much greater than pp. Then
T, does not vary and, if the conditions are not too
unusual, * there will be no electron drift along the
E field.

To calculate the wall conductivity we need, in
principle, to know the following function**:

S - S(?Ix’, vy,v vz,; 128 Uy’ Uzi-ry z)v (2)

which defines the probability of occurrence of a reflected
particle with the velocity v' = (v, v, v}) when an
electron with velocity v = (vg, vy vz)ystrlkes a point

= (x, 0, z). Unfortunately, Sis determmed not only by
the physical properties of the insulator but alsoby those
of the adjacent plasma, sothere are major difficulties in
calculating S and in deriving it by experiment,

From 8(v',v;P) and the distributionfunction fy v,x, 0,

z) for the incident particles we find the distribution
function for the reflected particles:

f (v, z 0,z :gdUS(V’, vixz, 2)f,(V, z z). {3)

Here we envisagethe limiting case wg7e — «, s0
the motion of a particle within the body of the plasma
should be described via Vlasov's equations with self-
consistent E and H.

It is extremely difficult to consider the processes
as a whole in such a system while incorporating (3},
s0 we consider here a model that provides a clear
illustration of the effects.

Example, We assume that, near some point on the
wall, the magnetic field is homogeneous and perpen-
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Fig, 1

*In particular, if there are no ridges large relative
to pT on the insulator,

**We use a coordinate system in which the y-axis is
perpendicular to the wall,
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dicular to the wall, while the electric field is parallel
to the latter (Fig, 1). We also assume that the reflect-
ing layer is much less than pp in thickness and that
its thickness can be neglected in the calculation.

Then the incident and reflected particles move
trochoidally:

z=a—(4/ ®) cos(wt -+ a),
v, = A sin (@l + a),

¥y =t, vy =1, =const, w=cE/H,

z="b+ wt 4 (4 / o) sin (0t + a),

v, = w + 4 cos{wt + a). “)

The time should be eliminated from the integrals of
(4) viay = vyt in considering static problems.

If we know fi(v,x,0,2) and f_(v, %, 0, z) at the sur-
face of the wall, we can use (4) to find the values of
these functions for any y by substituting for v, x, and
z the quantities
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¥
For the current distribution in the plasma

j=—¢ Sv(,ﬁ-{-f_)a’v. ’
(8)

We consider the calculation scheme via a simple
example in which £, is Maxwellian with a displacement
in velocity space equal to w:

f. == oxp |- [0 4 02 + (0. — 0Pl
+ cTO (7)

We take f-as being an undisplaced Maxwellian func-
tion:

L exp{ L
o= ep g o v vl

2 KTe (8)

and the normalization factors are

2n
N =P N ==, (9)
+ n/=c3 ﬂ/163
To T1

in which n, and n_ are the densities of the particles
incident on and reflected by the wall, respectively. If
there is no loss of particles,

n.Cro = n_cr,

(10)

250

Substitution of (5) into (7) and (8) readily shows that
(7) does not alter, while (8) becomes

1 1 .
f_-——-gq_“_exp{*—c.gl‘[?fxg-l- v+ (v, —w)? 4w +

2w (v, — £ in o, 2 |}.
42w (v, — w) cos @, o + 2wv, sin o, vy —I} )
We are interested in the x-component of the current,
and so we calculate only that component,
Since f, {(Vy)'is even, we have

— (53 vf dv. (12)
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Substitution from (9) and (11) gives

e~*do,.
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I= Vo oy H _3 St Oy (13)

Then the distribution of the current density near the

wall is defined by

0
' k yo
Y& = § sinteda, k= —& =Y.
(k) —Sao in—-e'da = 1

The form of Y(k) can be deduced from an equation
satisfied by this,

&Y Y)Y =2Y (15)

or from the function Z = Y/k

2y = 2Zk (16)

The integral representation of Y(k} shows that, of the
the three solutions to (15), we are interested in the one
that is an odd function of k and that has the following
properties when k — 0 and k — oo:

Y(0)=0, Y'(k)—o0 forkr-o,
Y(k)-—*o for k— oo.

We will not discuss the behavior of Y(k) in detail and
derive only the asymptotes for k — 0 and k — «, The
solutions to (15) for k — 0 can be approximated by Y, ~
~klnk, Y,~ const; Yy ~k. From (17) we have

Y(k)|k%~k1n[kx~y1n‘—;’;'. (18)

This means that the current density becomes zero
at y = 0 and rises somewhat more rapidly than linearly
away from the wall,
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The solutions to (15) for k — « can be approximated
by

Yy, s~kexp(lk r/’al’ 2,3

3 25tin
0,30 g €XP3~; =1, 2, 3. (19)

It follows from (17) that Y = C;Y, + C,Y,, where
C, and C, are certain constants, so

3 s
Y(k)~kexp(»— = !kl’)x

X €08 (3;//;3 [y T const); (20)

Figure 2 shows the general form of Y(k). As would be
expected, the current actually is localized within a
layer of thickness about pT.

The total current flowing in the layer

. 0
~30

and this is (with (cT1 = cTO))

jotn fm, B e E (22)
Va o H ' H

This expression has an obvious physical significance.

If we use (22) with the assumption that the noise
plays no great part, we can readily derive the voltage-
current curve for any particular system,

This study arose largely from a discussion with Ya,
V., Esipchuk and A, V, Trofimov an the role of elec-
tron collisions with the wall in a system containing a
low-density plasma, I am indebted to them for valuable
comiments.
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